This article is a work in progress.

Right-angled triangle definitions

In the formulas below hypotenuse \text{hypotenuse }denotes the length of the longest side of a right-angled triangle, the side opposite the right angle. For a non-right angle α\alpha, opposite\text{opposite} denotes the length of the side across α\alpha whereas adjacent\text{adjacent} is the length of the short side that is next to α\alpha.

  • Sine

    sinα=opposite÷hypotenuse\sin\alpha=\text{opposite}\div\text{hypotenuse}

  • Cosine

    cosα=adjacent÷hypotenuse\cos\alpha=\text{adjacent}\div\text{hypotenuse}

  • Tangent

    tanα=opposite÷adjacent\tan\alpha=\text{opposite}\div\text{adjacent}

  • Cosecant

    cscα=hypotenuse÷opposite\csc\alpha=\text{hypotenuse}\div\text{opposite}

  • Secant

    secα=hypotenuse÷adjacent\sec\alpha=\text{hypotenuse}\div\text{adjacent}

  • Cotangent

    cotα=adjacent÷opposite\cot\alpha=\text{adjacent}\div\text{opposite}

Angle units

To express angles, you may use one of the following units:

  • Radians - with complete turn α=2π\alpha=2\pi
  • Degrees - with complete turn α=360°\alpha=360°
  • Minute of arc - with complete turn α=21,600\alpha=21,600'
  • Second of arc - with complete turn α=1,296,000\alpha=1,296,000''
  • Grad - with complete turn α=400\alpha=400
  • Turns/Revisions - with complete turn α=1 rev\alpha=1\text{ rev}

Usage

To evaluate the inverse of a function, turning a function value into an angle, feed the value into the Function Value control.

Resources